Fat Facets Interacts with Vasa in the Drosophila Pole Plasm and Protects It from Degradation
نویسندگان
چکیده
Anterior-posterior patterning and germ cell specification in Drosophila requires the establishment, during oogenesis, of a specialized cytoplasmic region termed the pole plasm. Numerous RNAs and proteins accumulate to the pole plasm and assemble in polar granules. Translation of some of these RNAs is generally repressed and active only in pole plasm. Vasa (VAS) protein, an RNA helicase and a component of polar granules, is essential maternally for posterior patterning and germ cell specification, and VAS is a candidate translational activator in the pole plasm. VAS is stabilized within the pole plasm in that it is initially present throughout the entire embryo but strictly limited to the pole cells by the cellular blastoderm stage. hsp83 mRNA, which accumulates in the pole plasm through a stabilization-degradation mechanism, is another example. Here, we used a biochemical approach to identify proteins that copurify with VAS in crosslinked extracts. Prominent among these proteins was the ubiquitin-specific protease Fat facets (FAF), a pole plasm component [7], but one whose roles in posterior patterning and germ line specification have remained unclear. We present evidence that FAF interacts with VAS physically and reverses VAS ubiquitination, thereby stabilizing VAS in the pole plasm.
منابع مشابه
Title : “ Vasa and translational control in the Drosophila germ line ”
The Drosophila protein Vasa (VAS) is essential maternally for posterior patterning and germ cell specification. In the developing ovary and embryo, VAS is mostly present in germline RNPs, a general term for large cytoplasmic ribonucleoprotein particles such as nuage particles and polar granules. These particles, and VAS specifically, are involved in localizing and regulating translation from as...
متن کاملTargeting and Anchoring Tudor in the Pole Plasm of the Drosophila Oocyte
BACKGROUND Germline formation is a highly regulated process in all organisms. In Drosophila embryos germ cells are specified by the pole plasm, a specialized cytoplasmic region containing polar granules. Components of these granules are also present in the perinuclear ring surrounding nurse cells, the nuage. Two such molecules are the Vasa and Tudor proteins. How Tudor localizes and is maintain...
متن کاملLocalization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities.
The Drosophila gene vasa encodes a DEAD-box protein, which is localized during early oogenesis to the perinuclear region of the nurse cells and later to the pole plasm at the posterior end of the oocyte. Posterior localization of vasa protein depends upon the functions of four genes: capu, spir, osk and stau. We have found that localization of vasa to the perinuclear nuage is abolished in most ...
متن کاملVASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS.
VASA (VAS), a key protein in establishing the specialized translational activity of the Drosophila pole plasm, accumulates at the posterior pole of the developing oocyte. We identified a gene, gustavus (gus), that encodes a protein that interacts with VAS. A gus mutation blocks posterior localization of VAS, as does deletion of a segment of VAS containing the GUS binding site. Like VAS, GUS is ...
متن کاملThe fat facets gene is required for Drosophila eye and embryo development.
In a screen for mutations affecting Drosophila eye development, we have identified a gene called fat facets (faf) which is required for cell interactions that prevent particular cells in the developing eye from becoming photoreceptors. Analysis of eyes mosaic for faf+ and faf- cells shows that faf is required in cells near to, but outside, normal developing photoreceptors and also outside of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 13 شماره
صفحات -
تاریخ انتشار 2003